Implementing data validation pipelines with Java Streams API

In today’s data-driven world, it is crucial to ensure the integrity and quality of the data we are working with. One common approach to achieve data validation is by using data validation pipelines. A data validation pipeline is a sequence of validation steps that filter and transform data based on a set of predefined rules.

Java Streams API provides a powerful and expressive way to implement data validation pipelines. In this blog post, we will explore how to use Java Streams API to implement data validation pipelines.

Setting up the project

Before we dive into the implementation, let’s set up a basic Java project to work with. We’ll assume that you have Java and Maven installed on your system.

Start by creating a new Maven project using the following command:

mvn archetype:generate -DgroupId=com.example -DartifactId=data-validation -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

Navigate to the newly created project directory:

cd data-validation

Next, open the project in your favorite IDE and create a new Java class named DataValidationPipeline.

Implementing the data validation pipeline

To implement the data validation pipeline, we’ll define a series of validation steps and chain them together using the Java Streams API.

First, we’ll define a class Validator that represents a single validation step:

public interface Validator<T> {
    boolean validate(T data);
}

Each validator will implement this interface and define the logic for data validation.

Let’s implement a simple validator that checks if a string is not empty:

public class NotEmptyValidator implements Validator<String> {

    @Override
    public boolean validate(String data) {
        return !data.isEmpty();
    }
}

Next, let’s define our data validation pipeline class DataValidationPipeline:

import java.util.List;
import java.util.stream.Collectors;

public class DataValidationPipeline<T> {

    private final List<Validator<T>> validators;

    public DataValidationPipeline(List<Validator<T>> validators) {
        this.validators = validators;
    }

    public List<T> validate(List<T> data) {
        return data.stream()
                .filter(this::isValid)
                .collect(Collectors.toList());
    }

    private boolean isValid(T item) {
        return validators.stream()
                .allMatch(validator -> validator.validate(item));
    }
}

The DataValidationPipeline class takes a list of validators in its constructor and provides a validate method to validate a list of data items.

Running the data validation pipeline

Now that we have our data validation pipeline implemented, let’s test it out with a simple example.

In our main method, we can create a DataValidationPipeline instance and set up some sample validators:

public class App {
    public static void main(String[] args) {
        List<String> data = List.of("hello", "", "world", "123", "Java Streams");

        List<Validator<String>> validators = List.of(
                new NotEmptyValidator(),
                new NumericValidator()
        );

        DataValidationPipeline<String> pipeline = new DataValidationPipeline<>(validators);
        List<String> validatedData = pipeline.validate(data);

        System.out.println(validatedData);
    }
}

In this example, we have a list of strings data that we want to validate. We set up two validators: NotEmptyValidator and NumericValidator. The DataValidationPipeline instance is created with these validators, and the validate method is called to validate the data list.

The output of this example will be a list with the validated data items passed through the validation pipeline.

Conclusion

In this blog post, we have explored how to implement data validation pipelines using Java Streams API. We learned how to define validation steps as validators and chain them together in a data validation pipeline. By leveraging the power and expressiveness of Java Streams API, we can easily implement robust and efficient data validation pipelines in our applications.

#java #datavalidation #javastreams