Sparse matrices are matrices that have a significant number of zero values compared to the total number of elements. To efficiently represent such matrices in computer programs, we can use a HashMap data structure.
In Java, HashMap is a key-value based data structure that provides constant-time complexity for basic operations like insertion, deletion, and lookup. By utilizing this data structure, we can effectively store and retrieve non-zero values in a sparse matrix, avoiding unnecessary memory allocation for zero values.
Let’s see how we can implement a sparse matrix using a HashMap in Java.
Creating the Sparse Matrix Class
import java.util.HashMap;
public class SparseMatrix {
private int rows;
private int columns;
private HashMap<String, Integer> matrix;
public SparseMatrix(int rows, int columns) {
this.rows = rows;
this.columns = columns;
this.matrix = new HashMap<>();
}
public void setValue(int row, int column, int value) {
if (row < 0 || row >= rows || column < 0 || column >= columns) {
throw new IndexOutOfBoundsException("Invalid matrix index");
}
String key = row + "," + column;
if (value == 0) {
matrix.remove(key);
} else {
matrix.put(key, value);
}
}
public int getValue(int row, int column) {
if (row < 0 || row >= rows || column < 0 || column >= columns) {
throw new IndexOutOfBoundsException("Invalid matrix index");
}
String key = row + "," + column;
return matrix.getOrDefault(key, 0);
}
}
In the above code, we have defined a SparseMatrix
class that utilizes a HashMap (matrix
) to store the non-zero values of the matrix. The setValue()
method allows us to set a specific value at the given row and column index, while the getValue()
method retrieves the value at a given index. If a value is set to zero, we remove it from the HashMap to maintain sparsity.
Using the Sparse Matrix Class
We can now use the SparseMatrix
class to create and manipulate sparse matrices. Here’s an example:
public class Main {
public static void main(String[] args) {
int rows = 5;
int columns = 5;
SparseMatrix sparseMatrix = new SparseMatrix(rows, columns);
sparseMatrix.setValue(0, 0, 1);
sparseMatrix.setValue(1, 1, 2);
sparseMatrix.setValue(3, 2, 3);
sparseMatrix.setValue(4, 3, 4);
System.out.println(sparseMatrix.getValue(0, 0));
System.out.println(sparseMatrix.getValue(1, 1));
System.out.println(sparseMatrix.getValue(2, 2));
System.out.println(sparseMatrix.getValue(3, 2));
System.out.println(sparseMatrix.getValue(4, 3));
System.out.println(sparseMatrix.getValue(4, 4));
}
}
In the above example, we create a 5x5 sparse matrix using the SparseMatrix
class. We set a few non-zero values at different indices and then retrieve the values using the getValue()
method. The output demonstrates successful retrieval of non-zero values and default zero value for missing indices.
Sparse matrices provide an efficient way to store and process large matrices with mostly zero values. By using a HashMap to implement a sparse matrix, we can reduce memory usage and improve performance.
References: